Astronomers first noticed the strange behaviors of rotating galaxies almost 100 years ago, suggesting there’s an invisible dark matter hold them together with gravity. Or maybe we just don’t understand how gravity works at the largest scales. Observations are much better now, and astronomers have found examples of galaxies that almost entirely made of dark matter. Does this tell us anything?
In 2017, astronomers detected the gravitational waves and electromagnetic radiation from colliding neutron stars. This had been long theorized as one of the causes of a certain type of gamma-ray burst. By studying the event and its afterglow, astronomers have learned a tremendous amount about the formation of the heaviest elements in the Universe.
Last week we talked about rogue stars. This week we’re going to take things up a notch and talk about an even more extreme event. Rogue black holes. Astronomers recently discovered a supermassive black hole on an escape trajectory, leaving newly forming stars in its wake. It’s wonderful, terrible, nightmare fuel.
Okay sci-fi writers, today we’re going to give you a guided tour of building planets. How they form, how they grow, and how things can go horribly horribly wrong.
Whenever astronomers discover something surprising, the answer often turns out to be dust. Dust obscuring our view, dust changing the polarity, dust warming things up, dust cooling things down. It’s always dust. Until it isn’t.
We’ve spent a lot of time gushing about Saturn’s rings, but there are other places with ring systems. And not just Jupiter and the ice giants, but asteroids, dwarf planets, centaurs and even exoplanets. Today we’ll gush about them.
Ice is ice, right? You know, what you get when water freezes. Well, maybe here on Earth. But across the Universe, water can be squeezed together at different temperatures and pressures, leading to very different structures. Today we’ll talk about the different forms that ice can take.
The asteroid apocalypse is one of those existential crises that keep astronomers up at night. But the DART mission showed us that we can push an asteroid off its trajectory if we have enough warning. Today we’ll talk about how humanity is building early warning systems to give us time to respond to a dangerous asteroid.
If you’re in dark skies and look up, you’re certain to see a satellite. Lots of them. But how can you know which one you’re seeing, and how can you improve your chances of a sighting? Today we’ll talk about how to see satellites, or avoid seeing them.
We’ve talked about the rising problem of space junk. Okay, we know it’s an issue. So what can be done about it? Today we’ll talk about ideas to remove space junk, making sure space is open to use for the centuries to come.
Astronomers came together in January to present their newest research, and not surprisingly, the Winter AAS meeting was heavy on news from JWST. What were some of the new results that were announced?
Well, we did it. We made it to episode 666, an auspicious number to be sure. What can we do to celebrate this accomplishment? An episode all about things in the Universe that have been named after mythological people and places in the underworld?
The Sun is a third generation star, polluted with the metals from long dead stars. Astronomers have also discovered second generation stars, with very low metallicity. But theories suggest there must be a first generation, with stars made from only pure hydrogen and helium. Can we ever find them?
We generally save our stargazing suggestions for the summer, when it’s warmer in the northern hemisphere. But you’re tough, you can handle a little cold. And it’s worth it because there are some wonderful things you can see in the night sky this time of year.
Last week we talked about the missions we’re saying goodbye to. This week, we’re going to talk about some upcoming missions to say hello to. Some are brand new ideas, others are, uh, recycled.
It’s always sad to say goodbye, but when we send our robotic emissaries out into the cosmos, it’s just a matter of time before they shut down. Today we’re going to say goodbye to a few missions which have reached the end of their lives. But they were very good robots.
Moons orbit planets, planets orbit stars, stars orbit within galaxies. It’s orbits all the way down. But occasionally objects can receive a powerful kick that sends them off on a journey, never to return.
Light pollution is a big problem, and it’s only getting worse — not just near cities but everywhere thanks to increased satellite constellations. How bad is the problem, and how can we fix it?
Space is a big place, with a lot of galaxies, stars, planets and moons, and that means a lot of names. How do astronomers name stuff, like comets, asteroids, exoplanets, craters?
This week we saw the incredible image of DART smashing into asteroid Dimorphos. Beyond avenging the dinosaurs, what can we learn scientifically from this and other asteroid/comet impact missions?
Climate change is on our minds these days, with increasing wildfires, droughts and floods. What are the variables that play into a planet’s changing climate, and what can this teach us about the search for habitable planets across the Milky Way?
Well, this is it, we’re finally going to talk about the James Webb Space Telescope. After decades of development, delays and budget creep, the powerful infrared observatory is at its final home at the L2 Lagrange Point. Yesterday we saw the first scientific images from the telescope, and according to Pamela’s rules, we’re finally allowed to talk about it.
Now that we’ve discovered thousands of exoplanets, we’re learning more and more about what kinds of planetary systems there are out there across the Universe. Are planets like Earth unique or totally rare?
All the waiting is over, we’ve finally seen the image of the event horizon from the supermassive black hole at the heart of the Milky Way. Today we’re going to explain the picture, and what’s next for the Event Horizon Telescope.
We’ve always assumed that we lived in a perfectly normal system with a normal star and normal planets. It’s all… normal. But with our modern understanding of billions of stars, just how normal is our Sun, anyway?