Ep. 579: White and Black Dwarfs

Ep. 579: White and Black Dwarfs

I’ve got some bad news for you: stars die. At some point in the next few billion years or so, our Sun is going to start heating up, using up all the fuel in its core, and then eventually die, becoming a white dwarf. It will then slowly cool down to the background temperature of the universe, becoming a black dwarf.

Ep. 515: Space Radiation

Ep. 515: Space Radiation

Space is a hostile environment in so many ways. But one of its worst features is the various kinds of radiation you can find. When astronauts go back beyond the protective environment of the Earth’s magnetosphere, what are the various kinds of radiation they’ll encounter. And is there anything we’ll be able to do about it?

Ep. 503: Gravity Mapping

The Earth looks like a perfect sphere, but down here on the surface we see that there are mountains, rivers, oceans, glaciers, all kinds of features with different densities and shapes. Scientists can map this produce a highly detailed gravity map of our planet. And it turns out, this is very useful for other worlds too.

Ep 488: Dark Energy: 2018 Edition

The updates continue. Last week we talked about dark matter, and this week we continue with its partner dark energy. Of course, they’re not really partners, unless you consider mysteriousness to be an attribute. Dark energy, that force that’s accelerating the expansion of the Universe. What have we learned?

Ep 487: Dark Matter: 2018 Edition

Last week, we gave you an update in particle physics. This week it’s time to see what’s new in the world of dark matter. Spoiler alert, we still have no idea what it is, but maybe a few more ideas for what it isn’t.

Ep 485: Docking, Refueling, and Transferring

It’s one thing to get to space. But once you’ve made it there, what do you want to do? You’ll probably want to dock with another space ship, deliver cargo, refuel. Today we’ll talk about how all that happens.

Ep 484: Transfer Orbits and Gravitational Assists

If you want to get around in the Solar System, you’ll want to take advantage of natural gravitational speed boosts and transfer orbits. Whether you’re heading to the outer Solar System or you want to visit the Sun itself, the planets themselves can help you in your journey.

Ep 483: Stopping in Space

It’s one thing to get from Earth to space, but sometimes you want to do the opposite. You want to get into orbit or touch down gently on the surface of a planet and explore it. How do spacecraft stop? And what does that even mean when everything is orbiting?

Ep 482: Alternative Ways to Space

Getting to space is all about rockets, but people are trying to figure out other methods that could carry payloads to orbit and beyond. Railguns, airplanes, tethers and more. Today we’ll talk about alternative methods of spaceflight.

Ep. 442: Destroy and Rebuild Pt. 6: Magnetic Pole Reversal

If we look back into the geologic record of the Earth, it appears that our planet’s magnetic field flips polarity every few hundred thousand years or so. Why does this happen? When’s it supposed to happen next? Is it dangerous?

Ep. 437: Destroy and Rebuild, Pt. 1: The Torino Scale

We love to destroy the universe, and also rebuild it. Today we begin a new series where we destroy and rebuild. Let’s talk about some existential threats we face, and ways we could recover, starting with the sword of Damocles hanging over our head: killer asteroids!

Ep. 391: Entropy

Have you ever been doing thermodynamics in a closed system and noticed that there’s a finite number of ways that things can be arranged, and they tend towards disorder? Of course you have, we all have. That’s entropy. And here in our Universe, entropy is on the rise. Let’s learn about entropy in its specific, thermodynamic ways, and then figure out what this means for the future of the Universe.

Ep. 370: The Kaufmann–Bucherer–Neumann Experiments

One of the most amazing implications of Einstein’s relativity is the fact that the inertial mass of an object depends on its velocity. That sounds like a difficult thing to test, but that’s exactly what happened through a series of experiments performed by Kaufmann, Bucherer, Neumann and others.

Ep. 356: Rotational Inertia

An object at rest stays at rest, and object in motion tends to stay in motion. This is inertia, defined famously by Isaac Newton in his First Law of Motion.

Ep. 314: Acceleration

Put that pedal to the metal and accelerate! It’s not just velocity, but a change in velocity. Let’s take a look at acceleration, how you measure it, and how Einstein changed our understanding of this exciting activity.

Ep. 312: The Inverse-Square Law and Other Strangeness

Why don’t we have insects the size of horses? Why do bubbles form spheres? Why does it take so much energy to broadcast to every star? Let’s take a look at some non-linear mathematical relationships and see how they impact your day-to-day life.

Ep. 270: Inertia

An object at rest tends to stay at rest. An object in motion tends to stay in motion. Isaac Newton dismantled the traditional idea that objects would tend to slow down over time, and described the concept of inertia: the amount an object will resist changes in its motion.

Ep. 268: Energy

Our entire civilization depends on energy: getting it, converting it, burning it, and conserving it. But how do physicists think about energy? How do they measure and quantify it. And what is energy’s special relationship with mass?

Ep. 165: Doppler Effect

You know how a police siren changes sound when it passes by you? That’s the doppler effect. It works for sound waves and it works for light waves. Astronomers use the doppler effect to study the motion of objects across the Universe, from nearby extrasolar planets to the expansion of distant galaxies. Doppler shift is the change in length of a wave (light, sound, etc.) due to the relative motion of source and receiver. Things moving toward you have their wavelengths shortened. Things moving away have their emitted wavelengths lengthened.

Ep. 106: The Search for the Theory of Everything

At the earliest moments of the Universe, there were no separate forces, energy or matter. It was all just the same stuff. And then the different forces froze out, differentiating into electromagnetism, the strong force and the weak force. Today we’ll look at the problem that has puzzled physicists for generations: is there a single equation that explains all the forces we see in the Universe. Is there a theory of everything?

Ep. 105: The Strong and Weak Nuclear Forces

After a quick Dragon*Con break, we’re back to our tour through the fundamental forces of the Universe. We’ve covered gravity and electromagnetism, and now we’re moving onto the strong and weak nuclear forces. We didn’t think they’d really need to be separate episodes, so we’re putting them together. And then we’ll cap the whole series with the quest for the theory of everything.

Ep 102: Gravity

You seem to like a nice series, so here’s a new one we’ve been thinking about. Over the course of the next 4 weeks, we’re going to cover each of the basic forces in the Universe. And this week, we’re going to start with gravity; the force you’re most familiar with. Gravity happens when masses attract one another, and we can calculate its effect with exquisite precision. But you might be surprised to know that scientists have no idea why gravity happens.

Ep. 76: Lagrange Points

Gravity is always pulling you down, but there are places in the solar system where gravity balances out. These are called Lagrange points and space agencies use them as stable places to put spacecraft. Nature is on to them and has already been using them for billions of years.

Ep. 73: Questions Show #8

We’ve been so crazy following our own whims through the universe that we’ve neglected your questions. That ends today. It’s time to dig deep into our overflowing email box to retrieve the puzzling questions our listeners have sent in.

Ep. 48: Tidal Forces Across the Universe

Last week we talked about tidal forces within our solar system. This week we’re going to expand our view and encompass the entire universe. Some of the most dramatic events originate from tidal forces caused by gravity: other worlds, galaxies, black holes and even entire clusters of galaxies are under this influence.

Recent Episodes